\qquad
\qquad
\qquad

10-1 Study Guide and Intervention
 Square Root Functions

Dilations of Radical Functions A square root function contains the square root of a variable. Square root functions are a type of radical function.
In order for a square root to be a real number, the radicand, or the expression under the radical sign, cannot be negative. Values that make the radicand negative are not included in the domain.

Square Root Function	Parent function: $f(x)=\sqrt{x}$ Type of graph: curve Domain: $\{x \mid x \geq 0\}$ Range: $\{y \mid y \geq 0\}$	

Example: Graph $y=3 \sqrt{x}$. State the domain and range.

Step 1 Make a table. Choose nonnegative values for x

\boldsymbol{x}	\boldsymbol{y}
0	0
0.5	≈ 2.12
1	3
2	≈ 4.24
4	6
6	≈ 7.35

The domain is $\{x \mid x \geq 0\}$ and the range is $\{y \mid y \geq 0\}$.

Exercises

Graph each function, and compare to the parent graph. State the domain and range.

1. $y=\frac{3}{2} \sqrt{x}$

2. $y=4 \sqrt{x}$

3. $y=\frac{5}{2} \sqrt{x}$

\qquad
\qquad
\qquad

10-1 Study Guide and Intervention ${ }_{\text {(continued) }}$
 Square Root Functions

Reflections and Translations of Radical Functions Radical functions, like quadratic functions, can be translated horizontally and vertically, as well as reflected across the x-axis. To draw the graph of $y=a \sqrt{x+h}+k$, follow these steps.

Example: Graph $y=-\sqrt{x+1}$ and compare to the parent graph. State the domain and range.
Step 1 Make a table of values.

\boldsymbol{x}	-1	0	1	3	8
\boldsymbol{y}	0	-1	-1.41	-2	-3

Step 2 This is a horizontal translation 1 unit to the left of the parent function and reflected across the x-axis. The domain is $\{x \mid x \geq-1\}$ and the range is $\{y \mid y \leq 0\}$.

Exercises

Graph each function, and compare to the parent graph. State the domain and range.

1. $y=\sqrt{x}+3$

2. $y=\sqrt{x-1}$

3. $y=-\sqrt{x-1}$

